

UNIVERSITÄTSMEDIZIN

Brain changes associated with stuttering therapy and spontaneous recovery

Nicole E. Neef^{1 ⊠} & Soo-Eun Chang²

¹Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Germany ²Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA oxtimes nicole.neef@med.uni-goettingen.de

Adults

6

Introduction

- Neuroplasticity enables flexible adaptation to changing conditions and functional recovery throughout life.
- Longitudinal neuroimaging studies on neuroplasticity in stuttering are scarce.
- The few existing studies show brain reorganization in children who naturally overcame stuttering and adults who improved speech fluency through treatment.
- Our qualitative review synthesizes findings, highlighting the brain's reorganization potential in both children and adults, identifies core stuttering signatures, and points out gaps for future research.

Methods

Studies with children

- Year: 2017 2023
- One lab
- 3 studies

N = 11/34 recovered N = 12/43 recovered N = 23/95 recovered

Age 3 – 12 years

Studies with adults

- Year: 2001 2022
- 9 independent labs
- 16 studies
- N = 119; Median = 13Range 9 - 22
- Age 14 65 years

Neuroimaging

Connectivity

Task-state PET

Task-state fMRI

Resting-state fMRI

Fiber tracking dMRI

Task-state fMRI

Activity

- Structural MRI
- Diffusion MRI

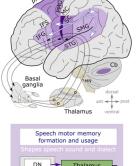
data support neuroplasticity

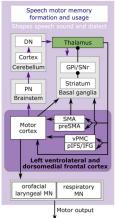
Children

? ?

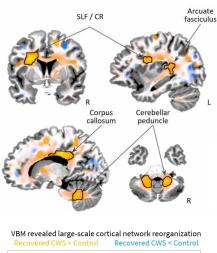
6

6

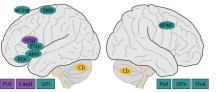

?


?

6


P P

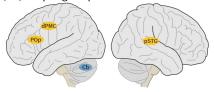
Potential neuroplastic mechanisms engage large-scale speech network



Massive mobilization of subcortical white matter structures

Children

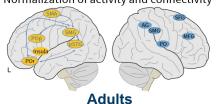
Mobilization of altered cortical structures


Risperidone > Placebo

Anodal-tDCS > Sham-TDCS

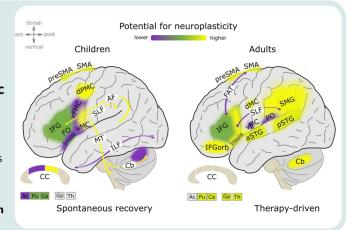
Task-neuroimaging revealed

and cortico-BG loops


(un)Coupling of speech-related structures

Rs-fMRI revealed recruitment of dedicated hubs of sensorimotor

Post < Pre


Normalization of activity and connectivity

Task-fMRI revealed largescale cortical network reorganization Post < Pre

Conclusion

- Therapy in adults can lead to functional changes in speech-related brain areas including the left dorsal premotor cortex (dPMC), whereas children spontaneously undergo structural changes in the left dPMC and interconnecting fiber tracts.
- The left ventral (pre)motor cortex (vPMC) exhibited no neuroplasticity in both children and adults, identifying it as a key neural basis of stuttering.
- Neuroplasticity related to activity and functional connectivity changes in children remains an unstudied area.

References

[1] Chang, S-E., Below, J.E., Chow, H.M. Guenther, F.H., Hampton Wray, A.M., Jackson, E.S., Max, L., Neef, N.E., SheikhBahaei, S., Tichenor, S.E., Walsh, B., Watkins, K.E., Yaruss, J. S.. Shekim, L., Bernstein Ratner, N. (in preparation) Stuttering: Our current knowledge, research opportunities, and ways to address critical gaps.

[2] Neumann, K. & Neef, N. E. (2023). Neuroimaging findings in stuttering. In A. am Zehnhoff-Dinnesen, J. Sopko, M. Monfrais-Pfauwadel, K. Neumann (Eds.), Phoniatrics II Speech and Speech Fluency Disorders -Literacy Development Disorders. Springer

[3] Neef, N. E., and Chang, S.-E. (2024). Knowns and unknowns about the neurobiology of stuttering. PLOS Biol. 22, e3002492. doi: 10.1371/journal.pbio.3002492.